Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
medrxiv; 2024.
Preprint en Inglés | medRxiv | ID: ppzbmed-10.1101.2024.02.13.24302781

RESUMEN

RATIONALE: Persistent cough and dyspnea are prominent features of post-acute sequelae of SARS-CoV-2 (termed 'Long COVID'); however, physiologic measures and clinical features associated with these pulmonary symptoms remain poorly defined. OBJECTIVES: Using longitudinal pulmonary function testing (PFTs) and CT imaging, this study aimed to identify the characteristics and determinants of pulmonary Long COVID. METHODS: The University of Alabama at Birmingham Pulmonary Long COVID cohort was utilized to characterize lung defects in patients with persistent pulmonary symptoms after resolution primary COVID infection. Longitudinal PFTs including total lung capacity (TLC) and diffusion limitation of carbon monoxide (DLCO) were used to evaluate restriction and diffusion impairment over time in this cohort. Analysis of chest CT imaging was used to phenotype the pulmonary Long COVID pathology. Risk factors linked to development of pulmonary Long COVID were estimated using univariate and multivariate logistic regression models. MEASUREMENTS AND MAIN RESULTS: Longitudinal evaluation 929 patients with post-COVID pulmonary symptoms revealed diffusion impairment (DLCO ≤80%) and restriction (TLC ≤80%) in 51% of the cohort (n=479). In multivariable logistic regression analysis (adjusted odds ratio; aOR, 95% confidence interval [CI]), invasive mechanical ventilation during primary infection conferred the greatest increased odds of developing pulmonary Long COVID with diffusion impaired restriction (aOR=10.9 [4.09-28.6]). Finally, a sub-analysis of CT imaging identified evidence of fibrosis in this population. CONCLUSIONS: Persistent diffusion impaired restriction was identified as a key feature of pulmonary Long COVID. Subsequent clinical trials should leverage combined symptomatic and quantitative PFT measurements for more targeted enrollment of pulmonary Long COVID patients.


Asunto(s)
Fibrosis , Disnea , Enfermedades Pulmonares , Tos
2.
biorxiv; 2021.
Preprint en Inglés | bioRxiv | ID: ppzbmed-10.1101.2021.04.06.438634

RESUMEN

The gut is a well-established route of infection and target for viral damage by SARS-CoV-2. This is supported by the clinical observation that about half of COVID-19 patients exhibit gastrointestinal (GI) symptoms. We asked whether the analysis of plasma could provide insight into gut barrier dysfunction in patients with COVID-19 infection. Plasma samples of COVID-19 patients (n=30) and healthy control (n=16) were collected during hospitalization. Plasma microbiome was analyzed using 16S rRNA sequencing, metatranscriptomic analysis, and gut permeability markers including FABP-2, PGN and LPS in both patient cohorts. Almost 65% (9 out 14) COVID-19 patients showed abnormal presence of gut microbes in their bloodstream. Plasma samples contained predominately Proteobacteria, Firmicutes, and Actinobacteria. The abundance of gram-negative bacteria (Acinetobacter, Nitrospirillum, Cupriavidus, Pseudomonas, Aquabacterium, Burkholderia, Caballeronia, Parabhurkholderia, Bravibacterium, and Sphingomonas) was higher than the gram-positive bacteria (Staphylococcus and Lactobacillus) in COVID-19 subjects. The levels of plasma gut permeability markers FABP2 (1282 [plusmn]199.6 vs 838.1[plusmn]91.33; p=0.0757), PGN (34.64[plusmn]3.178 vs 17.53[plusmn]2.12; p<0.0001), and LPS (405.5[plusmn]48.37 vs 249.6[plusmn]17.06; p=0.0049) were higher in COVID-19 patients compared to healthy subjects. These findings support that the intestine may represent a source for bacteremia and may contribute to worsening COVID-19 outcomes. Therapies targeting the gut and prevention of gut barrier defects may represent a strategy to improve outcomes in COVID-19 patients.


Asunto(s)
Bacteriemia , Disbiosis , COVID-19 , Enfermedades Gastrointestinales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA